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In Situ Calibration Algorithms
for Environmental Sensor Networks: a Review

Florentin Delaine, Bérengère Lebental and Hervé Rivano

Abstract—The recent developments in both nanotechnologies
and wireless technologies has enabled the rise of small, low cost
and energy efficient environmental sensing devices. Many projects
involving dense sensor networks deployments have followed, in
particular within the Smart City trend. If such deployments
are now within economical and technical reach, their mainte-
nance and reliability remain however a challenge. In particular,
reaching, then maintaining, the targeted quality of measurement
throughout deployment duration is an important issue. Indeed,
factory calibration is too expensive for systematic application to
low-cost sensors and as these sensors are usually prone to drifting
because of premature aging. In addition, there are concerns about
the applicability of factory calibration to field conditions. These
challenges have fostered many researches on in situ calibration.
In situ means that the sensors are calibrated without removing
them from their deployment location, preferably without physical
intervention, often leveraging their communication capabilities.
It is a critical challenge for the economical sustainability of
networks with large scale deployments.

In this paper, we focus on in situ calibration methods for
environmental sensor networks. We propose a taxonomy of the
methodologies in the literature. Our classification relies on both
the architecture of the network of sensors and the algorithmic
principles of the calibration methods. This review allow us to
identify and discuss two main challenges: how to improve the
performance evaluation of such methods and how to enable a
quantified comparison of these strategies?

Index Terms—Sensor networks, calibration, algorithms

I. INTRODUCTION

ENVIRONMENTAL sensors are measuring instruments
designed to measure ambient quantities such as temper-

ature, relative humidity, noise, pressure, wind speed, wind
direction, chemical components concentrations and so on.
Fostered by the emergence of the Internet of Things (IoT)
and of low-cost sensing devices, the interest for these devices
has been growing for the past decades [1].

Depending on the target area to monitor and on the spatial
variability of the measurand, hundreds of devices may be
required, as shown for instance by [2] and [3] in the field of air
quality monitoring. The cost of sensors then becomes a major
factor, which explains the interest for low-cost sensors [4].
These technologies are still emerging and must face several
issues, one of them being the improvement of data quality [1]
[5] [6] [7] [8].
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et Couches Minces (LPICM), École Polytechnique, CNRS, Université Paris-
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More precisely, it is often observed that the sensing quality
of low cost devices decay with time, even under regular
operating conditions [9]. In particular, the calibration relation-
ship may change, hence the need for frequent evaluation. In
metrological terms [10], calibration consists in deriving, under
specified conditions, the relationship between the indication
of the instrument (its raw output) and the measurand (the
quantity intended to be measured). This is a quite well
mastered operation when performed in dedicated laboratory
facilities where most parameters can be controlled and almost
perfectly known. However, in such conditions recalibration
of a deployment of sensors means dismounting and shipping
the whole network from the field to a calibration facility and
re-deploy it afterward. It is not technically and economically
sustainable for dense deployments of low cost devices.

Consequently, calibration procedures suitable for sensor
placed in field conditions have been widely investigated in the
past two decades. This is all the more relevant as the validity
of laboratory calibrations is often questioned in the field [11]
[12]. Furthermore, a significant part of commercial sensor
technologies are sold without initial individual calibration (see
for instance [13]) to reduce cost.

In this paper, we review the literature on in situ calibration
methods for environmental sensor networks. In situ meth-
ods, sometimes called field, in place, remote or online cali-
bration instead, enable to calibrate measuring instruments of a
network while leaving them deployed in the field, preferably
without physical intervention. The literature on the subject
studies under which hypotheses, in which manner and with
which performance the measured values from a sensor network
may be exploited to improve the measurement accuracy of
the whole network through calibration. In a recent survey,
Maag et al. focus on the use case of air pollution monitoring,
addressing operational concerns regarding to calibration [14].

In the present paper, we propose a review of in situ
calibration strategies with a different scope: we address all
environmental sensor networks, regardless of the monitored
phenomenon. We also classify the literature with regard to
the underlying algorithmic approaches. More precisely, we
propose a synthetic taxonomy of the large variety of different
techniques reported under different terms in the literature, such
as ”blind calibration”, ”multi-hop calibration”, ”macro calibra-
tion” and so on. Additionally, we consider the architecture of
the sensor network on which depends the relevance of each
strategy.

The review is organized as follows. Section II defines the
terms used and details the scope of our literature review. A
taxonomy is then proposed for the classification of existing
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techniques of in situ calibration for environmental sensors
networks in Section III. In Section IV, various contributions
are analyzed and positioned regarding the previous categories.
Section V is dedicated to a discussion on how to bring to
a next level the performance evaluation of in situ calibration
methods and their quantified comparison. Finally, Section VI
gives a conclusion.

II. DEFINITIONS AND SCOPE

An environmental sensor network is a set of measur-
ing systems [10] spatially deployed in order to periodically
measure one or more quantities in an environment. Measuring
systems are also called nodes. Each may be composed of one
or more measuring instrument according to the definition
of a measuring system. A node may be static or mobile. The
set of nodes forms a (most probably wireless) network. It can
be either meshed, with device to device communications, or a
collection of stars centered on gateways. For a given measur-
and, instruments which are known to be more accurate than
the others of the network are called reference instruments.

The terminology used in this paper is inspired by the field
of dependability [15] [16]. In particular, recalibration methods
are contributing to the reliability of the measuring instruments.
Reliability is indeed the ability to continuously deliver a
correct service i.e., accurate values in our settings.

There are other considerations that could matter and interact
with calibration, such as integrity, security or even privacy, in
particular when considering crowdsensing platforms involving
citizens [17]. As a matter of fact, their integration at an early
step of the design of the sensor networks is crucial with respect
to the system architecture. The way these concepts are imple-
mented may have a significant impact on the effectiveness of
some calibration methods. We however do not consider them
in the scope of this survey because our classification relies
on the network architecture and the algorithmic principles
underlying the calibration method, as detailed in the following
section. This viewpoint is hardly influenced by system issues
unless practical implementation details are considered.

III. CLASSIFICATION

The following subsections introduce our taxonomy for the
classification of in situ calibration strategies for sensor net-
works (SN).

The classification is independent from the kind of mesurand:
the groups of categories described are relevant for any envi-
ronmental phenomenon.

We consider network architecture characteristics, namely
the nature of instruments and their potential mobility, and the
algorithmic principles of the calibration techniques, namely
the mathematical structure of the calibration relationship and
to which point the algorithm can be distributed.

Each subsection represents a primary level group of cate-
gories that may have others nested. Categories for each group
are in bold font.

A. Use of reference instruments

One of the first criteria of classification is how the cali-
bration method assumes the presence of reference instrument
within the network.

The calibration of measuring instruments using a suffi-
cient number of reference measurement instruments is called
reference-based calibration. It means that the network is
composed of both reference and non-reference instruments and
that all the non-reference instruments can be calibrated using
at least one reference instrument. The approach postulates
the existence of a calibration relationship between each non-
reference instrument and at least one reference instrument
because there are close enough for instance.

The calibration of measuring instruments in the absence of
reference values is called blind calibration. It means that the
network is composed of only non-reference instruments. These
various methods may or may not assume the existence of a
correlation between the instrument outputs.

The hybrid situation is called partially blind calibration.
In this setting, the network may gather both reference and non-
reference instruments, but a reference based calibration is not
achievable, e.g when some of the non-reference instruments
can never be compared to a reference instrument. It also
capture cases where some non-reference instruments are con-
sidered good enough to approximate a reference instruments
compared to the others.

B. Mobility of the instruments

The second significant aspect of the network architecture is
the potential mobility of nodes.

A first category of methods addresses network with ex-
clusively static nodes. A second one addresses networks
with exclusively mobile nodes. The corresponding methods
rely often strongly on the mobility of the nodes to achieve
calibration. A last group of methods addresses heterogeneous
networks with both mobile and static nodes. In such cases
the mobility of the nodes is not systematically exploited in the
calibration strategy.

C. Calibration relationships

The purpose of calibration is to establish a mathematical
relationship between the indications of the instrument and
the measurand. This category is first based on the number
of kind of quantities as input variables in the relationship: the
measurand, the indications, the influence quantities, and so on.
In terms of algorithmic principles of the calibration methods, it
implies the variety and quantity of data to exchange as well as
the computational effort that are necessary to achieve a target
accuracy.

The most straightforward relationships are called mono-
kind variables without time. They only take a single quantity
as input variable and do not depend on time.

The second category of relationships gathers the ones that
have mono-kind variables with time. It accounts for a
relationship with mono-kind variables which is influenced by
time, for instance in case of sensor drifting due to aging [18].
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The relationships with multiple-kind variables without
time account for two or more quantities as variables but
remain independent from time. These models are mainly used
to include the effect of influence quantities in the calibration
relationship. In these case, the networks include instruments
measuring the influence quantities. They are not systematically
reference instruments and therefore their calibration may also
be included in the calibration strategy.

Finally, this last approach may be extended into rela-
tionships wind multiple-kind variables with time when
appropriate.

For each of these categories, sub-categories can be defined
based on the kind of mathematical expression used for the
calibration relationship. Popular examples are the following:

• polynomial with constant coefficients [19],
• gain-phase [20],
• variable offset [21],
• neural network [22].

D. Instrument grouping strategies

While the previous categories are mostly driven by op-
erational constraints (deployment strategy, properties of the
measurand and of the selected sensors), the present paragraph
considers the number of nodes involved in each calibration
step and to which point the algorithm can be distributed.

A first approach is pairwise calibration. Two instruments
are used, one providing standard values for the other. It is
classically applied between a reference instrument (or approx-
imation of reference) and each of the nodes related to it. It
can be a distributed or even localized algorithm.

A macro calibration strategy consists in calibrating the
network as a whole. Even if they exist, the node-to-node
relationships are not exploited directly. A centralized algorithm
might be necessary with this grouping strategy.

Group calibration is an intermediate approach consisting
in carrying calibration operation among groups of measuring
instruments among the whole network. In this case, the criteria
defining these groups become essential. This approach may be
used when pairwise calibration induces significant error, while
macro calibration is not fine-tuned enough. This category
notably includes strategies where groups are composed of
instruments measuring additional quantities besides the main
target quantity. These additional quantities are often included
as influence quantities in the calibration relationship. These al-
gorithms can be at least partially distributed e.g., computation
concentrated on an elected group leader, or fully distributed
at the cost of messages broadcasting.

IV. REVIEW OF THE LITERATURE BASED ON THIS
CLASSIFICATION

An application of the classification is provided here with
highlights on the existing literature. Table I sorts a large
number of in situ calibration studies according to this classifi-
cation. Some rows refer to multiple papers as they are related
somehow (same technique or same authors) and consist in
developments of the same initial paper. The current section

focuses on a description of the methods. The topic of per-
formance comparison between methods is addressed in the
next section. The addressed measurands cover a wide range
of environmental quantities: temperature [19], pressure [23],
noise [24], air pollutants [25], light [26]... Most of the reported
studies have generic approaches that can be transposed to other
measurands.

A. Overview

Regarding to pairwise strategies, relatively few papers ad-
dress methodological issues related to reference-based pair-
wise strategies, as this approach is the closest to a ”traditional”
calibration approach with measurement standards and features
less challenges. Partially blind and blind pairwise calibration
methods (often focusing on mobile nodes) are more complex
as they require to define calibration relationships not only
between reference and non-reference nodes, but also between
non-reference nodes only. This translates into error propaga-
tion issues.

Macro calibration approaches were initially developed to
address the absence of reference instruments in a network
and thus are mostly blind or partially-blind. In the absence
of reference, there is a strong challenge in defining valid
calibration relationships based on non-reference sensors data,
which explains the strong interest for these methods.

Group strategies have been generating strong interests as
they appear to outperform both pairwise and macro strategies
with or without reference instruments.

Most methods are based on relationships with mono-kind
variables without time and with a linear expression, but more
complex models are progressively appearing to better address
the complexity of environmental sensing.

Likewise, while most work initially focused on static net-
works, there are now many interests for mobile nodes as they
allow for physical rendez-vous between nodes. Henceforth,
calibration methods are less impacted by the physical vari-
ability of the phenomena.

Finally, an underlying question addressed is the ability to
distribute the computation of calibration relationships [24] [27]
[28] [29] [30] [31] [32]. The topic is of strong interest when
considering privacy preservation issues [17]. The capability to
decentralize is linked to the grouping strategy: pairwise and
group strategies foster more naturally decentralized computa-
tion, under the condition that the nodes are capable of indi-
vidual procession and of bidirectional communication. On the
contrary, macro-calibration strategies tend to be centralized,
except when the characteristics of the parameter identification
methods allow for partially or fully decentralized computation.
However, while distributed computing impacts the computa-
tional performance of algorithm, there is no report on how it
affects calibration performance so far.

B. Mobile and static nodes

Static networks are more frequently studied than mobile
ones. A wide range of solutions is now available to calibrate
them. However, these calibration methods usually require a
high spatial density of nodes to overcome the spatial variability
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of the phenomena, which is not always viable technically or
economically. The availability of mobile nodes could allevi-
ate this constraint, as calibration operations exploit physical
rendez-vous between nodes. In turn, the methods based on this
principle are challenged when the rendez-vous frequency is too
low compared to the speed of degradation of the measurement
accuracy [33]. In such cases, the addition of a few reference
nodes seems to yield satisfying results [25] [34]. Moreover, a
challenge of mobile sensors is that they face rapid transients.
To address this, methods initially developed for static networks
appear promising, such as the work of De Vito et al. [22]
[35] which uses dynamic and nonlinear supervised machine
learning tools.

C. Calibration relationships

Most reported relationships are of mono-kind variables
without time type and based on linear expressions. Never-
theless, there is a rising interest for models with multiple-
kind variables, which stems from the observation that there
are indeed significant influence quantities for various envi-
ronmental measurands, notably air pollutant concentrations. It
often depends on the technology of the sensors used [36] [37]
[38] [39] [40]. Such relationships gave very interesting results
compared to simpler relationship models:

• for reference-based group calibration in [41] [42] and [43]
• for partially blind group calibration strategies in [38] [44]

[45] [46], including with time-sensitive models in [29]
and [44]

• for blind strategies, either pairwise or group based, in
[35] [47] [48] [49] [50].

On the contrary, relationships with multiple-kind variables
were shown to be unnecessary in [51] and in [52] where
the control of the operating temperature of the device was
sufficient to perform a pairwise calibration without being
influenced by this quantity.

In general, time-dependent approaches are used to address
drift issues. Drift is often modeled as an additive random
variable with a given probability distribution [28] [53], so that
drift-compensation translates as an offset correction.

D. Pairwise strategies

a) Reference-based pairwise: Relatively few papers ad-
dress methodological issues related to reference-based pair-
wise strategies, as this approach is the closest to a ”traditional”
calibration approach with measurement standards. Primarily,
reference instruments may be directly co-located in the field
with non-reference instruments to achieve their calibration [38]
[41] [42] [54] [55].

However, more automated strategies are expected, requiring
less the co-location of instruments. Nevertheless, even in the
simple case of a relatively dense SN, the measurand may
spatially vary too much in general to relate a reference instru-
ment at a given location to an instrument at another location
for calibration purposes. As an elementary solution to this,
Moltchanov et al. [56] proposed to carry out calibration against
the reference node using only the data collected during a

specific time span based on the postulate that the phenomenon
varies less during this time span. This was an idea previously
developed by Tsujita et al. [57] including weather conditions
that were also used to corrected the measured values but not
with a reference-based approach.

b) Partially blind pairwise: Partially blind pairwise cal-
ibration focuses mostly on mobile nodes. Tsujita et al. [58]
tackled it first for mobile nodes by proposing that the device
to calibrate should display either the value of a reference node
that is close enough, or the average measurements between co-
located nodes if no reference node is available. A calibration
parameter is tuned with these values to correct measurements
between rendez-vous.

Y. Xiang et al. [28] later proposed another method. They
also distinguish calibration based on the values of a reference
instrument and on the values of a non-reference instrument.
Their originality relies in the correction of the values that is
performed with an estimator of the drift error of the node.
This error is recalculated at each calibration by minimizing
its variance according to a linear combination of the values of
the sensors involved in the calibration process.

Hasenfratz et al. [25] addressed by various methods the case
of calibration for mobile devices against reference instruments
or not. They notably provided dedicated extensions for the case
where some devices rarely encounter reference instruments.
They also demonstrated a linear dependency between the mea-
surement error and the number of intermediary calibrations
between a given node and the reference node it is calibrated
against. In [33] and [59], Saukh et al. proposed solutions to
this issue of error accumulation by working on the occurrence
of rendez-vous between nodes, in view of maximizing the
opportunities of calibration. An alternative idea was developed
by Fu et al. [60] who proposed the optimization of the
deployment of reference instruments in order to ensure that all
nodes can be calibrated against one of the reference with a path
no longer than k hops. Then Maag et al. [45] [61] and Arfire
et al. [44] extended this work to models with multiple-kind
variables, with and without time dependency. They showed
that the complexity of the model should be tuned based on
the frequency of rendez-vous.

In a similar way, Markert et al. [17] introduced a calibration
strategy based on rendez-vous but with a particular focus on
privacy aspects by design for the exchange of data.

Kizel et al. [62] also proposed a multi-hop calibration
method that consists into collocating two devices for a certain
time, one being the reference to the other, and then moving
the freshly calibrated device close to another non-calibrated,
a reference instrument being introduced in the loop to reset
the error that accumulates. The advantage is that the error is
related to the number of hops that took place like in [25].

Sailhan et al. [24] developed a multi-hop, multi-party cali-
bration scheme with the addition of an assessment protocol for
the relevancy of the calibration, based on a weighted directed
hypergraph of the network, the weights indicating the quality
of the calibration. The presented strategy was applied to blind
networks but as in [25], it could be extended to partially blind
networks.
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Fonollosa et al. [63] used various models for calibration of
chemical sensors with an approach called ”calibration transfer”
which is a kind of multi-hop calibration. Indeed, the principle
is to calibrate one of the instruments and then apply the
same model on other sensors to calibrate, eventually with a
transformation to properly map the measurement spaces. This
approach was also used by Laref et al. [64]. Such strategies
are widely use in the field of spectroscopy [65]. It however
requires that the measuring instruments are more or less
behaving the same under identical varying conditions, which
is not always the case when dealing with low cost sensors.

E. Blind macro calibration
Blind calibration strategies for SN were first developed as

a way to localize spatially the nodes in a static network.
Whitehouse et al. [66] proposed to solve an optimization
problem ensuring that consistency and geometrical constraints
were respected. Ihler et al. [67] proposed nonparametric belief
propagation instead. Taylor et al. [68] developed an inference
technique using a Bayesian filter. However, as they targeted
spatial localization, most of these methods based their algo-
rithms on electromagnetic or acoustic [69] propagation (time
delay, intensity loss...), and cannot be applied directly to other
calibration problems.

Bychkovskiy et al. [70] proposed a first solution that could
be used for any measurand, provided that the existence of
relations between instruments of the network are known. It
demands first to estimate the parameters of each existing
relationship between instruments in the network. Then, the
consistency of the derived relationships must be maximized
to be resilient to circular dependencies. This technique was
applied to a dense static SN and has not been yet extended to
a mobile SN. In theory, it could also be applied to a SN with
reference nodes but there are no report on the topic.

Later, Balzano et al. [19] developed a blind and partially-
blind calibration strategy for static SN suitable for any mea-
surands, without any prior knowledge on existing relations
between the values of instruments. They tested it notably on
temperature, light intensity or CO2 level measurements. The
key postulate is that the SN is dense enough to oversample
the signal of interest. They proposed that the true signal
lies in a subspace of the space formed by the measured
values. Considering the prior choice of the subspace, the
parameters of the calibration relationships for all nodes are
then estimated using singular value decomposition (SVD) or
by solving a system of equations using a least square estimator.
This method was extended later in [71] to provide a total
least square formulation and also in [72] to take into account
outliers and separate them from the measurement matrix.

Alternately, Takruri et al. [73] [74] [75] addressed cali-
bration as a drift compensation problem. They proposed to
proceed recursively: measured values at step n are first cor-
rected with predicted drifts obtained at step n-1, then the next
measurements are predicted using support vector regression
(SVR). Finally, the predicted values are used to estimate the
drifts using a Kalman filter. Kumar et al. [76] [77] replaced
SVR by kriging, which is a method of interpolation originally
from geostatistics, as a prediction method for next values.

Ramakrishnan et al. [78] proposed another blind calibra-
tion strategy based on a gossip-based distributed consensus
strategy, with SAGE algorithm used for parameter estima-
tion. Later Buadhachain et al. [29] used an expectation-
maximization algorithm instead. The consensus-based ap-
proach is interesting as it can reduce the communication
bandwidth.

Bilen et al. [20] extended the problem of blind calibration
to the case of sparse input signals, which are measurements
with missing/useless information, and exploited compressive
sensing to estimate the sensor’s corrective gains.

Cambareri et al. [79] proposed a non-convex formulation
of the problem and gave a formal criteria of convergence of
the calibration method enabling to estimate corrective gains
for the values.

For mobile nodes, C. Wang et al. [80] proposed a method
which exploits the moments of the measurements, here the
average and the variance. They formulate calibration as a
optimization problem to minimize the difference between the
moments of the true signal and the measured signal. The
method was extended in [81] and [26] for different explicit
expressions of the calibration relationship. The approach was
later tuned by C. Xiang et al. [82] to address specifically mo-
bile crowdsensing, with sensors embedded in mobile phones
for instance. Dorffer et al. [83] [84] [34] considered mobile SN
calibration with mono-kind variables and linear relationships
for spatially sparse signals by using matrix factoring, with an
extension regarding non-linear calibration [85].

Wang et al. [21] proposed an extension of [19] relaxing
some hypothesis and based their estimation on a Kalman filter
with the help of a drift detection strategy. The approach was
improved in [86] in terms of drift detection, number of sensors
allowed to drift at the same time and pre-processing of the
input signal with wavelet denoising. It was then extended for
sparse signals with either a Bayesian approach [53] or a deep
learning approach [87].

Yang et al. [88] also based their work on the idea of
[19]. They prove that, if the underlying signals follow a
first-order auto-regressive process, then the parameters of the
linear calibration model are recoverable. They use a Bayesian
nonparametric model to do so.

Overall, macro calibration methods do not suffer from
error propagation issues unlike pairwise approaches. However,
because of the absence of references, they usually require large
amount of data, which is typically available in the case of
high density static networks or mobile networks with high
frequency of rendez-vous.

F. Group strategies
On the first hand, group calibration strategies are used to

calibrate multiple instruments located at the same place and
measuring different quantities that could influence the cali-
bration relationship. It was shown that their corrected values
were more accurate when exploiting multiple-kind variables
in calibration relationships [35] [41] [42]. Therefore, strategies
[25] that were developed for pairwise and mono-kind variables
calibration in the first place were extended to group calibration
[44] [45] [61]. New methods were also developed.



IEEE SENSORS JOURNAL, VOL. X, NO. X, MONTH YEAR 6

Papers Availability of
reference

instruments

Instruments
grouping
strategies

Kinds of variables
in calibration
relationships

Mobility of
the

instruments
R PB B P Gr Ma 1V 1VT MV MVT M S MS

Ramanathan et al. [54] X - - X - - X - - - - X -
Miluzzo et al. [27] X - - - X - X - - - X - X

Deshmukh et al. [89] X - - X - - X - - - - X -
Spinelle et al. [41] [42] X - - X X - X - X - - X -
Moltchanov et al. [56] X - - X - - X - - - - X -

Gao et al. [90] X - - X - - X - X - - X -
Lin et al. [55] X - - X - - X - - - - X -

Fang et al. [38] X - - - X - - - X - - - -
Martin et al. [46] X X - - X - - - X - - X -

Sun et al. [43] X - - - X - - - X - - X -
Zimmerman et al. [91] X - - - X - - - X - - X -

Tsujita et al. [58] - X X X - - X - - - X - X
Tsujita et al. [57] - X X X X - - - X - - X -

Y. Xiang et al. [28] - X X X - - X - - - X - X
Hasenfratz et al. [25], Saukh et al. [33] [59] - X X X - - X - - - X - X

Fu et al. [60] - X X X - - X - - - X - X
Maag et al. [45] [61] - X X - X - - - X - X - X

Arfire et al. [44] - X X - X - X X X X X - X
Markert et al. [17] - X X X X - X - - - X - X

Kizel et al. [62] - X - X - - X - - - - X -
Sailhan et al. [24] - - X X X - X - - - X - -

Fonollosa et al. [63] - X X X - - X - - - - X -
Whitehouse et al. [66] - - X - - X X - - - - X -

Ihler et al. [67] - X X - X - X - - - - X -
Taylor et al. [68] - - X - - X X - - - - X -

Tan et al. [69] - - X - X - X - - - - X -
Bychkovskiy et al. [70] - X X X - - X - - - - X -

Balzano et al. [19], Lipor et al. [71], Dorffer et al. [72] - X X - - X X - - - - X -
Takruri et al. [73] [74] [75] - - X - - X X - - - - X -

Kumar et al. [76] [77] - - X - X - X - - - - X -
Ramakrishnan et al. [78] - - X - - X X - - - - X -
Buadhachain et al. [29] - - X - X X X - - - X - X

Bilen et al. [20] - - X - - X X - - - - X -
Cambareri et al. [79] - - X - - X X - - - - X -

C. Wang et al. [80] [81] [26] - - X - - X X - - - X - -
C. Xiang et al. [82] - - X - - X X - - - X - -

Dorffer et al. [83] [85] [84] [34] - X X - - X X - - - X - -
Y. Wang et al. [21] [53] [87] Li [86] - - X - - X - X - - - X -

Ye et al. [23] - - X X - - X - - - X - -
De Vito et al. [22] [35] - - X - X - - - X - - X -
Son et al. [92], Lee [93] - - X - - X X - - - X - -
Stankovic et al. [31] [32] - - X - - X X - - - - X -

Fishbain et al. [30] - X X - X - X - - - - X -
Popoola et al. [47] - - X X - - - - X - - X -

Yan et al. [48] - - X - X - - - X - - X -
Yang et al. [88] - - X - - X X - - - - X -

Mueller et al. [49] - - X - X - - - X - - X -
Kim et al. [94] - - X - X - - - X - - X -

Barcelo-Ordinas et al. [50] - - X - X - - - X - - X -

TABLE I
IN SITU CALIBRATION STRATEGIES FOR SENSOR NETWORKS

R: REFERENCE-BASED, PB: PARTIALLY BLIND, B: BLIND, P: PAIRWISE, GR: GROUP, MA: MACRO, 1V: MONO-KIND VARIABLES WITHOUT TIME, 1VT:
MONO-KIND VARIABLES WITH TIME, MV: MULTIPLE-KIND VARIABLES WITHOUT TIME, MVT: MULTIPLE-KIND VARIABLES WITH TIME, M:

EXCLUSIVELY MOBILE, S: EXCLUSIVELY STATIC, MS: MOBILE AND STATIC

Based on results like [37] [41] [42], Zimmerman et al. [91]
introduced a calibration strategy using random forests with
multiple-kind variable relationships for measuring systems
when the latter are colocated to reference instruments.

Kim et al. [94] recently presented an approach of blind
group calibration with prior information on the cross-
sensitivities of sensors, known from laboratory experiments,
in order to build calibration relationships with multiple-kind
variables.

On the other hand, other works proposed group calibration

strategies in order to reinforce the confidence in the values
used as standards.

Miluzzo et al. [27] proposed a calibration technique with
multiple reference nodes in a SN by formulating a distributed
average consensus problem to estimate the offset of each non-
reference node. The concept of sensing factor was introduced.
It refers to the area within which the measurand value can be
assumed to be identical for the reference instruments and the
instruments to calibrate.

Lee et al. [92] [93] proposed a blind group approach
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for mobile nodes. The area of deployment is divided into
several non-overlapping regions. It is assumed that calibration
relationships exist in each of these area. This is used to
formulate the parameter estimation problem as a Laplacian
linear equation relating the drift, the measured values and
noise.

Stankovic et al. [31] developed a novel methodology based
on exploiting the neighbors of each node. Relations in the
network are expressed in a matrix and, as there are groups
of neighbors, the matrix can be decomposed into blocks.
Each block represents a group of relations with parameters
to estimate, reducing the problem compared to a macro blind
calibration. This approach was extended in [32] to better deal
with the case of additive measurement noise.

Fishbain et al. [30] proposed a method of aggregation for
non-calibrated SN relying on a group-consensus strategy.

Fang et al. [38] later introduced reference instruments that
are measuring different quantities, in view of analyzing the
influence quantities in the calibration relationship.

V. TOWARD PERFORMANCE EVALUATION OF IN SITU
CALIBRATION STRATEGIES

In the preceding review, no comparison of strategies in
terms of performance was made. However, each publication
on a novel strategy proposes a validation step either based on
simulations [34], laboratory or field experiments [56] or both
[19].

It is achieved in the following manner: reference values,
which are values that should have been measured by healthy
instruments, are compared to corrected values after the appli-
cation of the strategy to evaluate.

Reference values are obtained by simulation or from refe-
rence instruments in the field. Then a dataset of measured
values is created, either by extraction from the reference
dataset (with the addition of faults to the sensors data, in
an approach through numerical simulation) or using actual
sensors deployed in the field. Afterwards, The calibration
strategy is applied on this measured dataset, and the corrected
dataset is compared to the reference dataset using appropriate
metrics.

Regarding approaches by simulation, the reference values
are computed numerically. Different protocols have been pro-
posed to generate them. It can be based on 2D Gaussian fields
[83] or ARMA processes [87] for instance. Disturbances like
noise or drifts are added to the reference values in order
to generate the measured values. Concerning laboratory or
field experiments, reference values are usually obtained with
high accuracy instruments and measured values from low cost
sensors. There are lots of datasets produced and used in various
studies (for instance a deployment at James Reserve used in
[19], the OpenSense Zurich Dataset [95]), though the resulting
data often become unavailable over time.

Various metrics are then used to assess the performance
of the strategies such as root-mean-square error, Pearson’s
coefficient, metrics developed in works on the evaluation of
the performance of sensors [96] or ones related to official
recommendations such as the data quality objective (DQO)

in the context of air quality measuring instruments [97] [14]
[98]. They are mostly based on prior information concerning
the expected corrected values.

In general, there appears to be a strong need for systematic
tools and protocols [99] [14] enabling to compare across
studies the performance of in situ calibration methodologies.
Indeed, results can be compared even if they were not ob-
tained on the same test case as it was done in [100], but to
have the most significance, they should be obtained on the
same experiment. Unlike the common practice in the field of
machine learning [101] and even if datasets are disclosed or
simulation protocols are presented in detail, there is no report
of a test case widely used across the literature. The comparison
between methods is also limited by code availability: while a
few authors [71] [72] have shared their code, in most cases
existing strategies must be fully reimplemented for comparison
purposes, as in [21]. This is time-consuming and drives the
authors to only focus on comparisons between strategies with
very specific characteristics, for instance those which use
machine learning techniques [102] [103] [104].

Moreover, the availability of tools for comparisons across
studies would be highly useful to enable end-users to select the
most appropriate method for a given use case. So far, only a
few methods provide formal criteria regarding to the suitability
of a method to a given configuration such as in [34] or [19].
In addition, it would also help to configure the strategies in
an optimal manner, for instance regarding the periodicity of
calibrations e.g., according to a defined rule—every night in
[56]–or upon decision by an expert user.

Throughout the literature, it appears that the quality of
input data impacts the performance of the calibration. Outliers
contained in datasets have a more important influence on
the calibration results than the overall data accuracy [38].
As an early work on the topic, Ramanathan et al. [54]
observed that, even with individual field calibration for each
sensor performed with a mobile chemistry lab at the time of
deployment, the resulting data was corrupted with anomalous
entries. Thus, through simulation with controlled injection of
outliers, their influence on the calibration results could be
quantified and strategies to tolerate or remove them could be
designed.

To quantify data quality, a few contributions on in situ cal-
ibration now offer indicators concerning this topic: Ganeriwal
et al. [105] proposed a reputation-based framework in order to
validate the integrity of data based on a Bayesian formulation
and in which nodes computes metrics regarding past and future
behaviors of the others. Yim et al. [106] developed a malicious
node detection system based on variation tests and confidence
level evaluation using a weighted majority voting system.
Hasenfratz et al. [107] presented a model-based approach to
determine accuracy bounds of noisy sensor values for sensor
networks. Radanovic et al. [108] also introduced a reputation
system and particularly focus on malicious aspects with the
design of an influence limiter independent of the reporting
strategy of the malicious nodes. Le Taro et al. [109] proposed
in a simple way the comparison of a confidence indicator
between nodes, related to the duration elapsed since their last
calibration with another device. This topic is of major interest
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to provide more trust into measured values [110]

VI. CONCLUSION

Instrumenting territories to monitor environmental phenom-
ena may require the use of hundreds or thousands of measuring
instruments. This is becoming possible nowadays thanks to the
emergence of low-cost sensors. Among the multiple challenges
that must be tackled regarding these technologies, evaluation
of the quality of their calibration, and its correction if needed,
is critical to ensure that measurement results remain accurate
over time. In situ calibration is a response to the issue of
calibrating dense sensor networks at a reasonable cost. To
achieve that, the use of the properties of the sensor networks
have a key role in the strategies. We propose in this paper a
classification of such methodologies applied to environmental
sensors, based on four groups of categories capturing both
network architecture and algorithmic principles: the availabil-
ity of reference instruments in the network, the mobility of
the instruments, the kind of input variables in the calibration
relationships, and the instruments grouping strategy (pairwise,
macro or by group) used for a calibration procedure.

Our review shows that relatively few papers address method-
ological issues related to reference-based pairwise strategies,
as this approach is the closest to a ”traditional” calibration
approach and features relatively little challenges. Partially
blind and blind pairwise calibration methods, which often
focus on mobile nodes, are more complex as they require to
define calibration relationships between non-reference nodes,
which translates into error propagation issues. Macro calibra-
tion approaches are mostly used to deal with reference-less
situation. Their challenge lies in defining valid calibration
relationships between non-reference sensors. Group strategies
appear to improve on performance of both pairwise and
macro strategies with or without reference instruments. Most
methods are based on calibration relationships with mono-kind
variables and a linear expression, but more complex models
are progressively appearing to better address the complexity
of environmental sensing. Likewise, while most work initially
focused on static networks, there is now a strong interest for
mobile nodes as they allow for physical rendez-vous between
nodes, which reduces the impact of the physical variability of
the phenomena between static distant nodes.

Though each method has its own performance indicators, it
is observed that there is no commonly used test case enabling a
standardized comparison between methods. The development
of both systematic tools for comparison of performance be-
tween methods and indicators on data and calibration quality,
could strongly foster the applicability of in situ calibration on
actual deployment and help to build trust in environmental
sensor data from low-cost sensors.
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